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Abstract
Neural networks can implement arbitrary functions. But, mechanistically, what are the
tools at their disposal to construct the target? For classification tasks, the network must
transform the data classes into a linearly separable representation in the final hidden layer.
We show that a feed-forward architecture has one primary tool at hand to achieve this
separability: progressive folding of the data manifold in unoccupied higher dimensions. The
operation of folding provides a useful intuition in low-dimensions that generalizes to high
ones. We argue that an alternative method based on shear, requiring very deep architectures,
plays only a small role in real-world networks. The folding operation, however, is powerful
as long as layers are wider than the data dimensionality, allowing efficient solutions by
providing access to arbitrary regions in the distribution, such as data points of one class
forming islands within the other classes. We argue that a link exists between the universal
approximation property in ReLU networks and the fold-and-cut theorem (Demaine et al.,
1998) dealing with physical paper folding. Based on the mechanistic insight, we predict that
the progressive generation of separability is necessarily accompanied by neurons showing
mixed selectivity and bimodal tuning curves. This is validated in a network trained on the
poker hand task, showing the emergence of bimodal tuning curves during training. We hope
that our intuitive picture of the data transformation in deep networks can help to provide
interpretability, and discuss possible applications to the theory of convolutional networks,
loss landscapes, and generalization.

1. Introduction

Trained neural networks are highly complicated functions that map from the data space to
a more useful representation space. Classical proofs show that a feed-forward, multilayer
architecture can approximate any function in the limit of infinite layer widths (Hornik
et al., 1989; Cybenko, 1989; Funahashi, 1989; Barron, 1994). Yet given the architecture’s
expressivity, the question remains whether the type of functions parameterized naturally by
the architecture allow a good solution to be found by the training procedure, and whether
it generalizes to unseen data samples. One way to study these questions is via the loss
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landscape (e.g. Gardner and Derrida, 1988; Gur-Ari et al., 2018; Abbaras et al., 2020;
D’Ascoli et al., 2020; Mannelli et al., 2020; Lewkowycz et al., 2020). Here we start from a
different perspective: We ask, what are the fundamental operations available to the network
to construct the output?

We consider feed-forward, fully connected networks trained on classification tasks. A
focus on the ReLU nonlinearity yields a particularly intuitive perspective, which can then
be directly transferred to other activation functions. Multilayer ReLU networks define
piecewise-linear functions where each border is related to the readout hyperplane of a neuron
(see e.g. Raghu et al., 2017; Hanin and Rolnick, 2019; Balestriero et al., 2019). The relative
arrangement of these hyperplanes is sufficient to understand the transformation implemented
by the network (Section 2).

For a classification task, the last hidden layer of the trained network must feature a
representation of the data in which classes can be separated by linear readouts from the
output layer. Therefore, through the layers, the network must progressively transform an
initial, linearly nonseparable data-distribution into a linearly separable form. What types of
transformation can a layer implement to increase the linear separability of a representation,
and which transformations are irrelevant? We argue that there is one highly efficient
mechanism to increase linear separability, based on folds of the data manifold in unexplored
dimensions (Section 3), while other mechanisms that work also without additional dimensions
are much less efficient. In Section 4 we discuss how the folding mechanism can be analyzed
in high-dimensional real-world networks.

Our primary aim in this manuscript is to build a new intuition for the processing inside
neuronal networks. Therefore we abstain from most mathematical analysis. However, our
hope is that the intuition presented here will be useful to construct new proofs dealing with
trainability and generalization.

2. Forging the representation’s shape: stereotypic nonlinearity and affine
transformation

The standard feed-forward architecture is a peculiar combination of alternating affine trans-
formations and an element-wise applied nonlinear function

x
(l)
i = Φ

(
W

(l)
ij x

(l−1)
j + b

(l)
i

)
, (1)

with x(l)i being the activation of neuron i in layer l and ~x(0) the input data. The trainable
weight matrix W (l) and bias vector ~b(l)define the affine transformation, and Φ : R→ R is the
nonlinear activation function. We choose rectified linear units Φ(x̃) = ReLU(x̃) = max(0, x̃),
but also discuss the effects of other activation functions. Preactivations are denoted as
~̃x(l) = W (l)~x(l−1) +~b(l). The data, being comprised of a number of classes, follows a ground-
truth probability distribution Px(0) . What does the transformed distribution Px(1) and those
in successive layers look like? How can the transformation promote linear separability of the
classes, which is required for classification in the output layer?

The affine transformation itself cannot improve linear separability, because all lines are
mapped to lines. One way to picture the affine transformation is to note that it can be
uniquely specified by a mapping between two arbitrary parallelograms. Another way is to
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Figure 1: Possible transformations of a data representation by a single layer. (a)
Positioning on the anvil: Hyperplanes (black), whose normal vectors and displace-
ments are given by the rows of W and the biases b, define the affine transformation
which has no effect on separability, lines are mapped to lines. But it implements a
rotation and a positioning of the data distribution for the nonlinearity to act on.
(b) The hammer: Hyperplanes in a ReLU network can be thought of as a large
hammer making dents in the distribution. Only the convex hull of the distribution
is modified – the architecture cannot selectively target regions inside it. (c) The
resulting representation in the next layer. Figuratively, the distribution has been
thrown into the corner of an N -dimensional room.

picture an arbitrary arrangement of hyperplanes, defined for each unit by x̃i
!

= 0 (Fig. 1a);
then the normal vectors of these hyperplanes constitute the new set of coordinate axes. Even
though a representation can be stretched, translated, sheared, rotated and mirrored by an
affine transformation, the resulting shape with respect to linear readouts is always equivalent
(Fig. 1a).

Clearly, linear separability can only be improved by the nonlinearity, but the parameters
of the nonlinearity are typically fixed. Thus, the network must use its freedom from the affine
transformation to position the representation such that the application of the nonlinearity
yields a beneficial deformation. The element-wise ReLU nonlinearity can be visualized by N
hyperplanes separating positive preactivations from negative preactivations; All data points
on the negative side of a hyperplane are projected onto the hyperplane since all negative
preactivations map to zero activation. Since each neuron corresponds to one hyperplane, the
combined effect is that of a corner of an N -dimensional room into which the representation
is pressed after application of the affine transformation (Fig. 1c). Therefore, each ReLU
can be thought of as a hammer-blow making a flat dent in the distribution (Fig. 1b), and
the affine transformation as the positioning (and scaling) of the distribution on the anvil
(Fig. 1a). Other types of nonlinearities have the same qualitative ’hammer’ effect, only that
they do not necessarily map sets of points to a single hyperplane, but result in a more gradual
compactification of the points along the direction of the normal vector. If the nonlinearity
has a sigmoidal shape, the compactification is applied from both sides.

As a consequence, the nonlinearity can only modify the convex hull of the representation,
because to affect a data point inside the distribution all points further to the outside along
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Figure 2: Use of folding to efficiently expose an inner class boundary. (a) Fold of
an “1d-egg” distribution, where the classes are the inner and the outer part of
the egg, induced by a ReLU hyperplane with a component in the unexplored
second dimension. (b) Separability of the resulting representation by a linear
readout. (c) Learned, and also globally optimal hyperplane configuration solving
the “2d-egg” problem by folding with 3 hidden neurons. (d) The corresponding
folded 3d-representation in the hidden layer. Figuratively, the flat distribution has
been thrown into the corner of a 3 dimensional room. Recall of a linear decision
plane is 100% for the inner and 96, 8% for the outer class. A wider hidden layer
would allow additional folds, improving the roundish triangular approximation of
the circle to a roundish N -gon.

one direction must be affected as well. How can this transformation increase the separability
of classes within the distribution? In other words: To separate a set of points belonging
to one class that is at least partly surrounded by points of other classes, how can concave
dents in the representation be realized? In the next section, we show how this is efficiently
possible as long as the layer provides higher dimensions which are not explored by the data
manifold. We also argue that this folding mechanism is sufficient to provide the universal
approximation property. There are two further mechanisms we could identify which do not
require an expansion of dimensionality but are much less efficient, these are discussed in
Appendix A and Appendix B.

3. Folding in unoccupied, higher dimensions

So far, in Fig. 1 we have considered a situation in which the intrinsic dimensionality of the
data manifold equals the dimensionality of the layer. But the typical situation is that the
layers are wider than the input dimension, so in the first layer at least, there are directions
in activation space which are not explored by the data distribution. This degeneracy has the
advantage, that if the hammer of a hyperplane hits the representation from an unexplored
direction, no datapoints are squashed together, they are only displaced within this very
coordinate. Such a mapping is nonlinear but still injective. Therefore, the hammer blow of
a ReLU hyperplane that has a component into a direction in which the data manifold has
no extension results in a folding of the representation into that direction (Fig. 2a). Along
the folding edge, crucially, this exposes an internal region of the distribution to the higher
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dimensional, embedding space. The exposed edge allows a linear readout from the next layer
to separate previously inaccessible parts of the representation (Fig. 2b). Note that the angle
between the normal vector and the representation subspace must be larger than zero, but also
smaller than orthogonal to create a fold. To see how this principle generalizes, first consider
the stereotypic toy problem of linearly nonseparable classes, the “2d-egg” (Fig. 2c), which
can be (approximately) solved using just one layer of three neurons (Fig. 2c,d). Concerning
higher-dimensional distributions, the folding edge, which becomes exposed, is always a
hyperplane of one dimension less than the dimensionality of the folded object (i.e. a line for
a 2d object). Compared to the mechanism based solely on shear discussed in Appendix A,
folding in unused dimensions is more efficient: Not only can several folds be applied by a
single layer, but the operation also scales better to higher dimensions, as an N -dimensional
egg problem can be approximately solved by just one layer with N + 1 neurons .

In a deep architecture each layer adds folds to the already folded object, resulting in a
hierarchical structure that can have exponentially more edges than the total number of folds.
A useful intuition for this property is to think of folding an origami object: Most folds are
not applied in parallel, but progressively to the evolving object. Folding is known to be a
powerful operation: For 2-d sheets (paper) it is proven that after appropriate folding, a single
straight cut is able to separate arbitrary shapes previously drawn on the sheet (fold-and-cut
theorem, Demaine et al. 1998; Bern and Hayes 2011). This result is remarkably analogous
to the case of neural networks, where arbitrary classes can be separated from the (folded)
data representation in the last layer by a flat hyperplane. It is an enticing possibility that
the fold-and-cut theorem for 2d-sheets could be generalized to the N -dimensional case and
connected to the existing universal-approximation theorems for neural networks.

We expect dimensionality expansion by folding operations throughout a deep network to
be the main resource to create separability, compared to the additional mechanism provided
by using shear (Appendix A). To prove this, a class of data distributions would need to be
assumed. However, an empirical test could be to restrict weights during training to normal
matrices, since the folding mechanism does not necessarily require non-normal hyperplanes,
and shear is thereby excluded. This could be an advantageous architecture, as indicated by
the results on training very deep networks with orthogonal weight initialization (leading to
dynamical isometry, Pennington et al. 2017; Xiao et al. 2018).

Having identified folding as the basic operation a network can use to achieve linear
separability, we ask in the next section: How is this mechanism used in a trained network,
and how can folded structures be analyzed in real-world networks that have very high
dimensionality?

4. Analyzing the transformation in trained networks

The fundamental obstacle to understanding the transformation implemented by real-world
networks is high dimensionality, being a great challenge to visualization, which is mostly
confined to 3-d slices (linear techniques) or 3-d manifolds (nonlinear techniques) of the
N-d space. A simple method would be to look at 2-d PCA plots of a layer, and plot lines
for a number of selected hyperplanes. To access folding, hyperplanes can be selected that
have both a component outside the span of the representation as obtained by incremental
PCA, and a significant proportion of negative preactivations, which correspond to the data
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points affected by the fold. This method may allow the exposure of feature generation for
simple data distributions, but is severely limited because it assumes a connection between
large variance and important features; and because folds relying on several hyperplanes, for
example the solution of the 2d-egg problem in Fig. 2c, are not straight-forwardly detected
by this method. However, it may be usable in convolutional layers, because each filter is
restricted to a low-dimensional subspace, such as 3x3 conv = 9d.

An approach that can overcome the limits of visualization is to define observables which
are indicative of specific operations, and measure their occurrence. The dimensionality of the
representation is an observable related to folding. By doing a PCA on both the preactivations
and the activations of a layer, it can be accessed how many and which directions have
acquired nonzero variance, that is, have been folded (Fig. 3b). Because folds expose the
data at the kink, their use to create separability must mean that these neurons respond
little to the inner class, and at the same time not at all or strongly to the outer classes
(compare Fig. 2). A fold that improves linear separability should therefore go hand-in-hand
with a stereotypic bimodal tuning curve for the outer classes. Since ReLU units map all
negative inputs to zero, they cause a delta peak in the tuning curves at 0. So it is more
informative to look at the preactivations’ tuning curves instead, which should show a dip for
a subset of classes close to zero. For neurons with a smoother nonlinearity, also the activation
tuning curves can be considered instead. Analyzing this type of tuning as an observable thus
indicates the prevalence of linear separability-generation by folding also in real-world trained
networks (Fig. 3c,d, Fig. 4). Recanatesi et al. (2019) have shown that the dimensionality of
the data representation in deep networks often decreases in the last layers, while it increases
throughout the previous layers. We hypothesize that the bimodal type of tuning should build
up towards the “completed fold” in the layer of highest representation dimensionality, and if
the dimensionality is reduced in the following layers, such bimodal tuning of neurons should
be reduced, because it is only beneficial in conjunction with dimensionality expansion, but
becomes detrimental to the conservation of separability when dimensionality is compressed
(see supplementary figures S3, S4, S5 for a first validation).

Lastly, we propose to consider the angle between the normal vector defining the hyperplane
of a neuron and the subspace of the data representation. Units that create folds (Section 3)
should have an intermediary angle between 0 and π/2. If they contribute to the generation
of separability, these units should furthermore show the bimodal type of tuning curves.
Randomly initialized units should have an angle determined by the ratio of representation
dimensionality and layer width. For very wide layers, random angles would thus cluster close
to π/2, which might allow to distinguish neurons with random angle from neurons whose
angle was optimized during training to contribute to linear separability generation.

4.1 Poker hand task

We here analyze networks trained on the poker hand task from the UCI repository (Dua and
Graff, 2017). The input data is 10 dimensional, describing a five card poker hand (suit and
rank each), and the targets are 10 classes constituting the type of hand (nothing, pair, two
pairs, three of a kind, straight, flush, full house, four of a kind, straight flush, royal flush).
Note that the later classes are much less frequent and harder to learn, so we focus here on
the first 7 classes. This task is well suited for our purpose for several reasons: First, a linear
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Figure 3: Analysis of the transformation learned to solve the poker hand task. (a)
3d-PCA plots of the representation. Even though the data is only 10 dimensional,
the 3d-PCA is not very informative. (b) Evolution of representation dimensionality
in the two hidden layers, showing strong folding related dimensionality expansion.
(c) Deviation from unimodality of preactivation tuning curves in layer 1 and 2
for class 2, assessed by histogram of the Hartigan dip statistic for each neuron.
Surrogates (green) use a random layer 1 or 2, respectively. Here and in panels (d,e)
results are aggregated across 10 trained network realizations. (d) Histogram of
angles between the normal vectors and the representation subspace, for neurons
with large (dark orange) and small dip statistic (blue). Random vectors (green)
for comparison. A neuron is classified as having a large dip if the dip statistic for
at least one class is larger than the maximal dip statistic for the random layer
surrogate. (e) Large accuracy loss after silencing 10 neurons from the subset
with larger dips, compared to 10 neurons with smaller dip statistic. Silenced
neurons from layer 1 (filled bars) and layer 2 (empty bars). Accuracy measured
as macro-averaged F1 score, excluding classes {5, 8, 9}. Mean score of the intact
networks is 0.97.
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classifier on this data has very low performance close to chance, so the network must use the
mechanisms of separability generation to improve performance. Second, the data does not
offer an advantage to convolutional architectures, allowing us to restrict the analysis here to
the case of fully connected networks. Third, since we are not interested in the generalization
properties of the trained networks, we can use the exhaustive data set for training, which
allows better interpretability because the true task structure is learned. Lastly, the task is
high-dimensional and complex enough to defy visualization of the data structure (Fig. 3a),
while still allowing a theoretical understanding.

We train fully connected 3-layer ReLU networks with layer widths {10→ 100→ 100→
10} using cross-entropy loss with momentum 0.9, batchsize 500 and a learning rate schedule
of 0.1 for 50 epochs then 0.01 for 50 further epochs, implemented in pytorch. Although not
in the overparametrized regime, having ∼ 1.2× 104 parameters compared to ∼ 106 training
samples, the network shown in Fig. 3 and Fig. 4 achieves 100% training accuracy on all but
the difficult classes {5, 8, 9} (see suppl. tables S6). Visualization of the data representation
by means of the first three principal components is of little use (Fig. 3a).

An incremental PCA of the pre- and postactivations in each layer shows a strong increase
of dimensionality due to folding (Fig. 3b). Also the class specific tuning curves of the trained
network show the predicted sign of separability generating folds: Many of the tuning curves
are bimodal (or multi-modal), with a change of the dominating class close to the folding
edge (Fig. 4a,c), see suppl. figures S1 and S2 for the curves of all 200 neurons), this is in
clear contrast to the corresponding tuning curves in a random network before training, which
are close to Gaussian (Fig. 4b). The oscillating multi-modal nature of some of the trained
tuning curves is due to the categorical (discrete) nature of the data. The important feature,
however, is that in these curves the central peak close to the folding edge is missing for some
classes while existing for others, in line with the prediction of bimodality (see also figures
S1, S2). Using Hartigan’s dip statistic (Hartigan and Hartigan, 1985; Freeman and Dale,
2012), an elegant non-parametric measure of deviations from unimodality, we find that the
distribution of dip sizes across neurons clearly tends to higher values in the trained compared
to the untrained networks (Fig. 3c).

Neurons with large dip size for at least one class define hyperplanes whose angle between
normal vector and representation subspace tends towards intermediary values (Fig. 3d),
as expected from the theory; However, the angle distribution does not show a difference
to neurons with small dip sizes. A reason for this could be, that the layers are not very
wide compared to the representation dimensionality so that also random angles fall into the
intermediary range, and these may not be penalized by the loss function because unnecessary
folds in unused dimensions are not detrimental to linear separability. It is striking that in the
second layer, the angles in the trained networks have all shifted to higher values compared to
the untrained state (Fig. 3d). Note that no angle between normal vector and representation
subspace is close to zero, therefore, the mechanism of separability generation solely by shear
(Appendix A) does not play a role in this network.

Finally, while the angles to the representation subspace do not distinguish between
neurons with large and small dip statistics, those with large dips are more important for the
network function: Silencing 10 neurons with large dip size results in a considerable loss of
accuracy, while silencing 10 neurons with small dip sizes has a small effect (Fig. 3e).
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Figure 4: Examples of preactivation tuning curves. (a) Class-resolved tuning curves
(histograms) for the preactivations of a representative subset of neurons in layer
1 after training. Vertical black line marks the position of the folding edge at
x̃i = 0. Colors of the classes are 0/nothing (black), 1/pair (green), 2/two pairs
(dark orange), 3/triple (blue). (b) Close to Gaussian preactivation tuning curves
in untrained network. (c) Analogous to (a), but for the trained layer 2. See figures
S1 and S2 for the complete set of tuning curves.

5. Conclusion

In this work, we have developed an intuition for the type of transformations a feed-forward
network applies to the data distribution, drawing an analogy to forging and folding. We
found that in the context of classification, the network has one basic tool at hand to efficiently
manufacture the linear separability of classes necessary in the final layer: To progressively
fold the distribution in higher, unexplored dimensions, thereby efficiently exposing arbitrary
internal regions of the distribution to the outside. For ReLU networks this can be likened to
folding an N -dimensional origami object. For smooth nonlinearities, the folding corresponds
to a smooth bending. This does not make a qualitative difference for classification: The bent
region is exposed to the outside, just like the region around a fold.

Although visualization in high-dimensional spaces is strongly limited, the action of the
folding mechanism can be analyzed also in large realistic networks by defining observables
causally linked to the operations. Specifically, by using the insight into generation of linear
separability by folding, we found that mixed selectivity with bimodal tuning curves, in which
neurons are activated weakly by some class, but at the same time not at all and strongly by
another class (or classes), are a causal sign of beneficial folding operations. For very wide
networks, also the angle between the weight vector of a neuron and the subspace explored by
the data representation might be informative.
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Limitations

The work represents first steps towards an alternative understanding of the highly complex
transformations implemented by trained networks. It is so far restricted to fully connected,
deep feed-forward networks and classification tasks. The statement about the relative
inefficiency of separability generation without dimensionality expansion is not quantified
by a rigorous calculation. That is because a proof would require assumptions about the
class of realistic data distributions, an understanding of which is currently, to our knowledge,
lacking. However, that there are hard restrictions on the expressivity of networks without
dimensionality expansion is consistent with (Johnson, 2018), where it is proven that deep
but fixed width networks are not universal approximators. Finally, the poker hand task, on
which we have presented the initial validation of our predictions, is relatively small scale; an
extension of the theory to convolutional architectures would be desirable to allow validation
on large image classification models. Also, the task data are categorical variables, which
makes the analysis of bimodality in the trained tuning curves less obvious due to the intrinsic
multi-modal structure along the original data axes.

Related work

That ReLU networks are piecewise-linear functions is the basis of a substantial body of
literature (e.g. Arora et al., 2016; He et al., 2018; Hanin and Rolnick, 2019; Cosentino et al.,
2020; Lakshminarayanan and Singh, 2021; Zavatone-Veth and Pehlevan, 2021). A notable
approach (Balestriero and Baraniuk, 2018; Balestriero et al., 2019) provides insight into
ReLU architectures by linking them to affine spline operators and showing that the networks
perform a greedy template matching. Concerning works that study the representation
manifold, mathematical frameworks constructing the mapping of smooth manifolds through
deep networks have been proposed in (Benfenati and Marta, 2021a,b) and (Hauser and
Ray, 2017). The work (Zhang et al., 2018) shows that for ReLU units, the manifold can
be studied from the viewpoint of tropical geometry. Closely related to our approach are
(Zhang and Wu, 2020), which investigates the properties of linear regions and hyperplane
arrangements, and (Rolnick and Kording, 2019; Carlsson et al., 2017; Carlsson, 2019; Gamba
et al., 2019) studying the preimage of classification boundaries arising in ReLU feed-forward
networks. These works are not explicitly concerned with the link between folding and
linear separability, however. In Section 3 we have argued that the analogy between ReLU
networks and (high-dimensional) paper folding goes so far that the fold-and-cut theorem
(Demaine et al., 1998; Bern and Hayes, 2011) corresponds to a universal approximation
theorem based on paper folding. At least for convex polyhedra, this theorem has been
generalized to arbitrary dimensions by a proof that convex polyhedra are flat-foldable (Abel
et al., 2014). Wide ReLU networks which have arbitrary many ambient dimensions can relax
the requirement that the linear elements of the decision boundary are to be folded exactly on
top of each other. Therefore we hypothesize that these approaches can be used to show that
the folding operations in ReLU networks can create arbitrary (non-convex) piecewise-linear
decision boundaries, but here leave this to future work.
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Benefits of increasing the mechanistic intuition for deep networks

We hope that our perspective on the generation of linear separability by folding operations
can inspire new theoretical approaches to the questions of trainablity and generalization of
network architectures. For example, it could be investigated how the training gradients move
the hyperplanes, in order to gain an understanding of the loss landscape and its local minima.
The mechanistic understanding of separability generation could also lead to more powerful
architecture parametrizations that allow one to naturally learn meaningful operations on
the data representation. For overparameterized models it would not help to render the loss
landscape more convex, because it is not sufficient to find a minimum that possibly overfits
the data, but instead a minimum is needed that in addition guarantees good generalization.
The generalization properties are given by the prior of an architecture, which in turn is
tightly related to the type of operations it tends to learn.

From a neuroscientific perspective, we have presented a principled argument linking
mixed selectivity and bimodality of tuning curves to the solution of classification tasks.
This is relevant because traditionally neuroscientists have tended to search for mono-modal
tuning curves strongly selective for a single class (Kandel et al., 2013; DiCarlo and Cox,
2007); At the same time, experimentally observed tuning curves are notoriously complex,
with mixed selectivity being the rule (Rigotti et al., 2013; Parthasarathy et al., 2017). It is
necessary to distinguish between a layer with a linearly separable representation, in which
mixed selectivity is to be expected, and a readout from such a layer, which can be strongly
selective.

Good directions for further work would be extensions to convolutional networks, trans-
formers, and to incorporate the common practice of dropout. For convolutional layers, it
should be possible to think of each filter patch as a small fully connected network. It then
follows that one needs more filters than the number of dimensions explored by the data
under the filter patch, otherwise no folding is possible and the extractable features are largely
linear. Another avenue for future work would be to study the high-dimensional limit and
thereby add to the understanding of results from approaches to feed-forward networks based
on statistical mechanics (Chung et al., 2018; Lee et al., 2018; Cohen et al., 2021; Fischer
et al., 2022; Bahri et al., 2020).
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Figure 5: Use of shear to expose an inner class boundary. (a) The classic “2d-egg” toy
problem of linearly nonseparable classes. (b) Method of moving probability mass
to the side in a deep network restricted to width 2, by interplay of nonlinearity
and non-orthogonal hyperplanes (shear). The majority of the squashed probability
mass is concentrated at the new origin, which is transported to the side by the next
layer (dashed lines). (c) 1d-hyperplane configuration of a 7 layer ReLU network
of width 2 that solves the 2d-egg problem, shown in the input space. There are
two lines per layer, from the first (black) to 7-th layer (white). (d) Corresponding
evolution of the representation through the layers. (e) Histogram of linear readout
from last layer showing linear separability of the two classes. Accuracies measured
as recalls in relation to the black decision line.

Appendix
A. Pushing aside pieces of the distribution by shear

Consider again the “2d-egg” toy problem (Fig. 5a). As shown Fig. 1, it is not trivial to
access the inner class because the hammer of a hyperplane cutting through the distribution
would only push the outer points inside as well. Without using wider layers supplying
additional dimensions (Section 3), we found only one method to solve the task: By using the
fact that the ReLU operation moves points in different directions, depending on how many
hyperplanes are crossed, it is possible to use non-normal hyperplanes to iteratively cut pieces
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from the distribution, pushing the probability mass to the side, thereby exposing the class
boundary inside the distribution, see Fig. 5b. In this way, the shell given by the outer class
can be shaved off (Fig. 5c,d), resulting in a linearly separable representation in the last layer
(Fig. 5e). It must be noted that only one such operation is possible per layer; therefore many
layers are required to solve even the simple 2-dimensional toy problem. In higher dimensions,
the number of layers needed by this mechanism scales even worse, as seen by considering a
“3d-egg” problem (that is, a boiled egg instead of a fried egg): Each layer can only push aside
one slice of the outer class, and the accumulated probability mass can only be transported
along a 1d-path. Thus it is not sufficient to go around the sphere once as in (Fig. 5c), but to
trace a spiral around it (as one would peel an orange). In fact, the restriction that the cut
needs to start from one point and proceed along one direction is related to the result that
deep, but fixed width networks are not universal approximators (Johnson, 2018). Lastly, it
is interesting to note that in the solution presented in (Fig. 5c,d) each layer performs the
exact same transformation, meaning that the weights and biases are identical across layers.
The network therefore corresponds to a recurrent network which has been unrolled in time,
as done for BPTT (Pearlmutter, 1989). Indeed, the equivalent 2-neuron recurrent network
also solves the task, see suppl. figure S7.

B. Compressive folding without dimensionality expansion

We can also consider the case where the hyperplanes are placed in the same way as in
Section 3, but without unexplored ambient dimensions. If the layer would provide unexplored
dimensions, this could also be seen as the case where the hyperplane is orthogonal to the
subspace occupied by the data manifold. Then the data points on the negative side of the
hyperplane are squashed together as in Fig. 1b/c and the representation looses information.
However this flat dent on the distribution can straighten out one angle in a (piecewise linear)
class boundary: If the hyperplane goes through the intersection of the two linear elements
forming the angle, the effect is that one of the elements is reduced to length zero (along the
direction defined by the angle), therefore the angle is gone and only a linear boundary remains.
This operation can be applied N times per layer, as the folding operations in Section 3. Also,
considering one hyperplane, it is possible to chain the operation by using multiple layers,
which corresponds to applying squashing along a piecewise linear path. However, because
the mapping is not injective (in contrast to the case including dimensionality expansion),
there are limits on what kind of boundaries can be created: (1) Any single angle along the
piecewise linear path of squashing must be smaller than π/2, and (b) the sum of angles in
any direction along the path is strictly bounded from above by π. For example, in 2-d it is
possible to approximate a half-circle as the class boundary by using successive tangential
squashes, but to approximate a complete circle as done in Fig. 2b,c and also Fig. 5 is not
possible.
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